A combined finite element method and continuum damage mechanics approach to simulate the in vitro fatigue behavior of human cortical bone.
نویسندگان
چکیده
The fatigue of bone, in particular the associated modulus degradation and accumulation of permanent strain, has been implicated as the cause of femoral neck fractures and the migration of total joint replacements. The objective of this study was to develop a technique to simulate the tensile fatigue behavior of human cortical bone. A combined continuum damage mechanics (CDM) and finite element analysis (FEA) approach was used to predict the number of cycles to failure, modulus degradation and accumulation of permanent strain of human cortical bone specimens. The simulation of fatigue testing of eight dumb-bell specimens of cortical bone were performed and the predictions compared with existing experimental data. The predictions from the finite element models were in close agreement with the experimental data. The models predicted similar development of modulus degradation and permanent strain as observed in the experimental tests. The technique is capable of predicting the accumulation of permanent strain without the need for simulating every single load step. These findings suggest that the complex fatigue behavior of human cortical bone can be simulated using the described approach and forms the first step for simulating the more complex mechanisms associated with femoral neck fractures and implant migration.
منابع مشابه
Ductile Damage Evolution under Triaxial Stress Conditions: Computational and Experimental Evaluations
The continuum mechanic simulation of micro-structural damage process is important in the study of ductile fracture mechanics. In this paper, the continuum damage mechanics model formulation proposed by Lematire has been validated against ductile damage evolution experimentally measured in A533B-C1 steel under stress triaxiality conditions. First, a 
procedure to identify the model parameters...
متن کاملDuctile Damage Evolution under Triaxial Stress Conditions: Computational and Experimental Evaluations
The continuum mechanic simulation of micro-structural damage process is important in the study of ductile fracture mechanics. In this paper, the continuum damage mechanics model formulation proposed by Lematire has been validated against ductile damage evolution experimentally measured in A533B-C1 steel under stress triaxiality conditions. First, a procedure to identify the model parameters f...
متن کاملEffect of Coating Materials on the Fatigue Behavior of Hip Implants: A Three-dimensional Finite Element Analysis
This study aims to validate, using finite element analysis (FEA), the design concept by comparing the fatigue behavior of hip implant stems coated with composite (carbon/PEEK) and polymeric (PEEK) coating materials corresponding to different human activities: standing up, normal walking and climbing stairs under dynamic loadings to find out which of all these models have a better performance in...
متن کاملA Continuum Shell-beam Finite Element Modeling of Buried Pipes with 90-degree Elbow Subjected to Earthquake Excitations
In the current work, the seismic analysis of bent region in buried pipes is performed, and effects of soil properties and modeling methods on pipe’s response are investigated. To do this task Beam, Beam-Shell Finite Element modeling and a Continuum shell FE models of a 90 degrees elbow are employed. In the Beam model, the pipe is simulated by beam elements while combined shell-beam elements a...
متن کاملEvaluation of continuum damage at different temperatures for aluminum-silicon alloy of engine piston within low-cycle fatigue regime
In this article, the isothermal low-cycle fatigue continuum damage in the engine piston aluminum alloy has been evaluated at different temperatures. For this objective, experimental data of low-cycle fatigue tests on standard specimens were used at 280, 350 and 425°C. Based on the continuum damage mechanics method, the fatigue damage was calculated during cyclic loading. Obtained results, inclu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of materials science. Materials in medicine
دوره 10 12 شماره
صفحات -
تاریخ انتشار 1999